
WRITTEN TESTIMONY OF DAVID WAGNER, PH.D.
COMPUTER SCIENCE DIVISION

UNIVERSITY OF CALIFORNIA, BERKELEY
BEFORE THE COMMITTEE ON HOUSE ADMINISTRATION, ELECTIONS

SUBCOMMITTEE
U.S. HOUSE OF REPRESENTATIVES

MARCH 15, 2007

Chairwoman Millender-McDonald, Ranking Member Ehlers, committee members, thank you
for the opportunity to testify today. My name is David Wagner. I am an associate professor of
computer science at U.C. Berkeley. My area of expertise is in computer security and the security
of electronic voting. I have an A.B. (1995, Mathematics) from Princeton University and a Ph.D.
(2000, Computer Science) from U.C. Berkeley. I have published two books and over 90 peer-
reviewed scientific papers. In past work, I have analyzed the security of cellphones, web browsers,
wireless networks, and other kinds of widely used information technology. I am a member of
the ACCURATE center, a multi-institution, interdisciplinary academic research project funded
by the National Science Foundation1 to conduct novel scientific research on improving election
technology. I am a member of the California Secretary of State’s Voting Systems Technology
Assessment Advisory Board and of the Election Assistance Commission’s Technical Guidelines
Development Committee (TGDC)2. I have served as a poll worker in my county, and I served as a
technical advisor to my county’s equipment selection committee.

In my testimony today, I will address source code disclosure, the problems it is intended to solve,
and its benefits and risks. There are peculiarities in the voting system market and regulatory process
that complicate the transition to the disclosure of the voting system source code. While these
peculiarities require that such a transition be carefully considered and managed, it is a transition
that I view as important for sound elections, for three reasons: (1) security and reliability; (2)
public confidence and transparency; and (3) oversight and accountability.

A primer on source code and its the role in elections

What is source code? Source code is the human-readable representation of the instructions that
control the operation of a computer. Computers are composed of hardware (the physical devices
themselves) and software (which controls the operation of the hardware). The software instructs
the computer how to operate; without software, the computer is useless. Source code is the human-
readable form in which software is written by computer programmers. Source code is usually
written in a programming language that is arcane and incomprehensible to non-specialists but, to
a computer programmer, the source code is the master blueprint that reveals and determines how
the machine will behave.

Source code could be compared to a recipe: just as a cook follows the instructions in a recipe
step-by-step, so a computer executes the sequence of instructions found in the software source code.
This is a reasonable analogy, but it is also imperfect. While a good cook will use her discretion
and common sense in following a recipe, a computer follows the instructions in the source code
in a mechanical and unfailingly literal way; thus, while errors in a recipe might be noticed and

1This work was supported by the National Science Foundation under Grant No. CNS-052431 (ACCURATE). Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation.

2I do not speak for UC Berkeley, ACCURATE, the California Secretary of State, the EAC, the TGDC, or any
other organization. Affiliations are provided for identification purposes only.

1



corrected by the cook, errors in source code can be disastrous, because the code is executed by
the computer exactly as written, whether that was what the programmer intended or not. Also,
computer software is vastly more complex than most recipes: while a typical recipe may contain
perhaps a dozen steps and fits onto a single 3x5” index card, computer source code often contains
hundreds of thousands of steps which, if printed, would fill up thousands of single-spaced 8.5x11”
sheets of paper.

What does source code have to do with elections? Over the past several decades, as we have
automated more and more of elections operations, elections have become increasingly reliant upon
computing technology. For instance, touchscreen voting machines use computers to capture votes;
paper ballots are scanned using computer-driven scanning machines; and computers tabulate and
tally the votes to determine the winner. This makes the software that controls these machines of
critical importance to our elections.

The source code in voting machines is in some ways analogous to the procedures provided
to election workers. Procedures are instructions that are provided to people; for instance, the
procedures provided to poll workers list a sequence of steps that poll workers should follow to
open the polls on election morning. Source code contains instructions, not for people, but for the
computers running the election; for instance, the source code for a voting machine determines the
steps the machine will take when the polls are opened on election morning.

Who writes election-related software? Today, counties and states buy voting equipment from com-
mercial vendors. These voting system vendors write most of the software in their machines. How-
ever, voting system vendors also incorporate software from third-party software vendors into their
products. For instance, a voting system vendor like Diebold might license software from Microsoft
for use in their touchscreen voting machine. The voting vendor might or might not receive source
code to the third-party software; if they do, they normally would not have permission to re-
distribute this third-party source code to others. Third-party software is sometimes called COTS
(commercial off-the-shelf) software, which we’ll cover later.

Who sees election-related source code? Today, most voting system vendors treat any source code
they write as confidential and proprietary. The vendors tightly control access to this source code.
Election officials use the equipment, but they are normally not given access to its source code.
Candidates, political parties, technical experts, and interested citizens are normally not given access
to voting system source code, either.

Federal voting standards require voting system vendors to share their source code with a testing
laboratory selected by the vendor, and the testing labs are supposed to check that the system
complies with the federal standards. However, the testing labs have come under growing criticism
for missing security and reliability problems in deployed voting systems, and many experts have
expressed concerns about the ability of the testing labs to ensure that voting systems are fit for
use1 2.

Most states do not receive or require access to voting source code. However, there are some
exceptions3. Five states appear to require source code for certified voting systems prior to their
use (FL, NY, TX, UT) or have the authority to demand source code at their discretion (CA). Two
states go farther and require that the vendor provide source code to representatives of the major
parties upon request (NC, MN). In California, three of the four major vendors have pledged that
if California passes a law requiring source code disclosure to the public, they would abide by those
provisions.

What is COTS? The federal standards provide a special exemption for COTS (commercial off-the-
shelf) software. The standards define COTS software as third-party software that is commercially

2



readily available. COTS source code is exempted from inspection or analysis by the testing labs.
This exemption makes it possible for voting system vendors to use software developed by third-
party vendors even though they may not be able to provide that source code to the testing labs. In
practice, most of the third-party software found in today’s voting equipment qualifies as COTS. For
this reason, people sometimes loosely use the term COTS to refer to any software from third-party
vendors, even though strictly speaking these two concepts are not identical.

What is firmware? In much of the software industry, “firmware” usually refers to software that
is embedded in a hardware device by the manufacturer and that cannot be modified. However,
in the voting industry, the term has expanded to encompass any software that executes on any
elections-related equipment. Therefore, when I refer to “software” in my testimony, it should be
understood to include what the voting industry calls “firmware.”

What can analysis of election-related source code reveal? Computer programmers are trained in
reading and analyzing source code. A programmer can read source code and use this to tell how the
machine will work on election day. Source code analysis can find many kinds of defects or problems
with the design or implementation of the machine. It can help assess the reliability or accuracy or
security of a voting machine. Source code analysis can also help to improve testing: tests devised
with the assistance of source code analysis are usually more effective than tests devised without
this access.

Many kinds of defects and problems with voting machines can only be found with access to the
source code. Security, in particular, is difficult to evaluate without access to source code. These
kinds of problems often cannot be detected through testing alone. In general, source code analysis
is one of the most effective methods we have for assessing the security, reliability, and accuracy of
voting machines.

However, source code analysis nonetheless has significant limitations: it generally cannot guar-
antee that a voting machine is secure, reliable, accurate, fair, or fit for use in elections. This is
due to two reasons. First, it is often difficult to be certain that the source code one is analyzing
is the same as what will be executed by the voting machine on election day. Second, given the
complexity of election-related software, it is generally not possible to be certain that you have found
all the bugs in the software, and it is generally not possible to be certain that the software will
work reliably and accurately on election day. This means that source code analysis can be used
to show the presence of defects in voting software, but usually it cannot convincingly demonstrate
the absence of defects. Source code analysis alone is unlikely to be able to demonstrate that voting
machines are trustworthy.

Source code disclosure: pros and cons

Today, candidates, election officials, experts, and interested citizens do not have a right of access
to voting system source code; vendors are allowed to keep this source code secret. Should vendors
be required by law to disclose their source code more broadly? I will attempt to list the advantages
and disadvantages I can see of mandating source code disclosure.

Source code disclosure could follow a number of models. The important variables are (1) who
will have access to the source code and (2) what will they be allowed to do with it. I don’t
propose a specific model here, but parts of my discussion will assume that election jurisdictions
and independent experts will have access to source code and will be able to use that access to read
and analyze the code.

Arguments for source code disclosure:

3



• Transparency: Historically, one of the abiding principles of election administration has been
that the best way to demonstrate that the election is honest is by inviting public scrutiny and
being open and transparent about all aspects of the election. When any aspect of election
administration is kept secret, it invites questions about whether the secrecy is intended to
cover up problems or to stifle debate.

The trend in elections is towards automation of more and more tasks that were previously
performed manually. However, the spread of automation has unintentionally come with the
unfortunate side-effect of degrading transparency4 5 6. When poll workers run elections or
elections official count ballots, the public can observe that the actions are being done correctly
and openly, and can spot any errors or problems. However, when those same operations
are performed by machines, the secrecy surrounding those machines and their programming
effectively prevents the public from meaningfully observing or engaging in oversight of the
process. Disclosure of voting system source code to the public would help to restore the
public’s ability to observe and exercise public oversight over the equipment and its role in the
administration of the election7.

• Informing public debate: There has recently been considerable public debate about the trust-
worthiness of voting machines. Some have argued that current voting machines are severely
flawed; others have disputed that characterization. However, because of the secrecy surround-
ing voting software, advocates on both sides of the debate have often been denied access to
the information that would be needed to present evidence for their position. The result is that
advocates are all too often forced to argue from first principles or based on their professional
judgement, rather than from hard evidence.

Source code disclosure would make it possible to have a more informed debate on the trust-
worthiness of today’s e-voting machines. We could expect and insist that anyone who wants
to argue that the voting software from one vendor is flawed should be able to point to where
exactly in the source code the flaw may be found. We could expect and insist that anyone
who wants to argue that the voting software is flawless should be able to show evidence that
the source code is free of flaws. This would create the opportunity for a more informed and
scientific debate regarding the trustworthiness of e-voting, and it might raise the level of the
debate.

• Better evaluation: Source code disclosure would enable independent analysis of voting ma-
chine software. Given the importance and public visibility of this topic, I expect source code
disclosure would lead some of the country’s best independent technical experts to analyze
the source code and publish their findings. There is reason to expect that such independent
analyses would improve our understanding of the strengths and weaknesses of machines and
remedy some of the shortcomings of the federal voting system certification process. This would
provide voters and concerned citizens with information to help them assess the equipment
they vote on. It would also help local and state election officials to make better procurement
and certification decisions.

The value of independent evaluation is probably most pronounced when it comes to security.
Security flaws can sometimes be subtle and easy to miss, even for experts. For this reason,
enabling more people, especially security experts, to review the software significantly increases
the likelihood that security problems in the code will be found.

• Accountability: The testing labs have been criticized for doing a poor job of evaluating voting
systems. There have been a series of documented failures of the testing labs to discover

4



serious security and reliability problems in the voting equipment they approved. In my own
examinations of voting system source code at the request of state election officials, I found
serious defects in the source code that should have been immediately apparent to anyone
with expertise in security. One cannot help but wonder whether the testing labs have anyone
qualified in security reviewing the source code.

These failures may be due to structural problems in the way that testing is performed. Because
testing labs are paid and selected by the vendor who makes the equipment being tested,
testing labs are surely aware that withholding approval too frequently might send vendors to
competing testing labs with a reputation for more lenient treatment. Elsewhere in the software
industry, a similar “race to the bottom” has been observed in labs that test compliance to
international computer security standards8. Unfortunately, at present there are few checks
and balances that can be used to hold testing labs accountable if they fail to serve the public
interest. In the long run, source code disclosure might help to ensure that the process is
effective by holding testing labs accountable in the court of public opinion if they approve
systems with obvious defects in the source code.

• Improving voting machines: In the long term, source code disclosure could have the effect of
improving the quality of voting system software. First, source code disclosure allows a large
community to spot bugs and problems so they can be corrected before they cause problems
in the field. Because it is often hard for people to spot problems in their own work, a fresh
eyes can see things that people who are most familiar with the code can miss by providing a
fresh perspective. Second, source code disclosure would give vendors a powerful incentive to
make sure their code is of high quality, to avoid public embarassment.

• Promoting competition: Source code disclosure would eliminate one barrier to interoperabil-
ity between equipment from different vendors, potentially enhancing competition between
vendors and providing more options to local election officials. Today, election officials cannot
mix and match equipment from multiple vendors within the same jurisdiction. The business
model adopted by the major vendors is based upon locking in counties as a captive customer
of a single vendor. If the county wants to upgrade or enhance their system, any components
they buy must come from that vendor. Unfortunately, this reduces the choices available to
local election officials, reduces competition, and makes it harder for new companies with in-
novative products to enter the voting system market. Vendors use the proprietary nature
of their code as one tool to keep counties captive. Source code disclosure would allow new
vendors to enter the markets and build equipment that interoperates with the major vendors’
equipment. This could potentially break the sole-source relationship vendors currently have
with the counties and provide more alternatives to local election officials. However, achieving
the benefits of interoperability would likely require changes to how we certify voting systems
to permit certification of mixed-vendor systems.

Source code disclosure could also allow new companies to provide maintenance and support
services for equipment built by the major vendors. This, too, would promote competition and
provide election officials with more choices. In today’s personal computer (PC) market, one
vendor (e.g., Dell) provides the hardware and another (e.g., Microsoft) provides the software.
This model has increased competition between vendors, lowering prices for PC users. It is
possible that opening the voting market to new vendors could reduce prices for voting systems
in the same way that it has for PCs.

Arguments against source code disclosure:

5



• Disclosure isn’t sufficient: Source code disclosure alone cannot ensure that voting machines
are trustworthy, because of the limitations of source code analysis mentioned earlier. For
instance, analysis of disclosed source code cannot ensure that the equipment is free of security
vulnerabilities or malicious logic designed to rig an election9, and it cannot ensure that the
voting machines will be fair and accurate.

At present, the best tool we have for ensuring that votes are counted accurately is to use
voter-verified paper records and perform routine manual audits of the paper records10 11.
Adoption of voter-verified paper records and routine audits would reduce our reliance on
source code analysis to ferret out security and reliability problems in the software.

The TGDC, a body which helps to set federal voting system standards, has recently endorsed
a requirement that voting systems be software-independent12. A voting system is consid-
ered software-independent if an undetected change or error in the voting software cannot
cause undetectable changes or errors in the outcome of the election13. For instance, voting
systems with a voter-verified paper record are considered software-independent, because the
voter-verified paper records can be used to audit or recount the election results. Software-
independence reduces some of the urgency for source code disclosure, by reducing (but not
eliminating) the impact that defects in the source code can have.

In general, we can rate voting systems by the degree to which they rely on software:

- Paperless e-voting systems are completely dependent on the correctness of their software.

- Adding a VVPAT printer reduces the dependence on software.

- Paper-based optical scan systems reduce this dependence even further, and hand-counted
paper ballots eliminate dependence on software.

Generally, the more the system depends on the correctness of its software, the greater the
likelihood of reliability and security problems. Of course, software independence is just one
among several considerations in the choice of a voting system.

• Transition risks: If source code disclosure is mandated with insufficient advance notice and
the transition isn’t managed properly, there is a risk that in the short term disclosure could
create more problems than it solves. Based on my experience14 15 reviewing the source code
of some voting software, it is my prediction that immediate disclosure of source code would
likely lead to discovery of serious problems in all vendors’ machines.

It is not clear that vendors could respond and fix these problems within a single election
cycle. Even if they could, the process of repairing all of these problems and approving and
deploying the patches could place a heavy burden on existing certification processes and on
election officials. In the election world, the time between identification of a flaw and the
availability of a patch for it is often painfully long. For instance, it has been over a year since
two serious security vulnerabilities were identified in one voting system by Finnish researcher
Harri Hursti16 17, but still no solution is available to election officials, despite the fact that
one of these vulnerabilities was labelled by some security experts as the worst vulnerability
they have ever seen in a voting system18. As another example, one system contains a security
vulnerability that was reported privately to the vendor in 199719, disclosed publicly in 200320,
confirmed to be still present in a 2004 report21, was still present when I examined the system
in 200622, and remains unresolved to this day23. Looking to the future, it is possible that
immediate source code disclosure might lead to the discovery that every e-voting system in

6



widespread use has multiple problems that cannot be addressed through procedures and that
cannot be repaired in time for the election. Depending upon the timing, all machines in the
country could have to be re-designed, re-implemented, and re-certified in a single election
cycle. In practical terms, this would be a disaster.

These risks can probably be mitigated if appropriate plans are put in place to manage the
transition to source code disclosure smoothly and if disclosure requirements are phased in
over time.

• Giving aid to attackers: One serious concern is that disclosing voting system source code
might aid attackers to find and exploit vulnerabilities in voting systems. This is indeed a
valid concern. Throughout the history of computer security, experts have struggled with this
risk.

At the same time, this concern must be tempered with a recognition that this is a complex
issue. If the voting system contains vulnerabilities, lack of source code will only slow down,
but not stop, a dedicated attacker. For that reason, security experts usually recommend
that it is far safer to avoid vulnerabilities in the first place, and source code disclosure is one
effective way to advance that interest.

In computer security, it is widely accepted that well-designed systems should be constructed
so that disclosing the source code does not endanger security. Kerkhoff’s principle, which
dates back to the 19th century, states that systems should be designed so that their security
does not rely upon the secrecy of their design or implementation24. The reason is simple: if
the leak of information about how the system works can compromise its security, then the
system is fragile25. Practical experience shows that these secrets often leak—for instance, one
vendor’s source code was leaked onto the Internet in 2003—and even in the absence of leaks,
a sufficiently dedicated adversary can get access to the same information through reverse
engineering. Generally speaking, if the system can be hacked by an adversary with access to
the source code, it can also be hacked by an adversary without that kind of access, so the
presence of such a vulnerability is very troubling. For these reasons, the consensus in the
computer security community is that systems should be designed to ensure that revealing the
source code does not endanger system security.

If we had confidence that existing voting systems were well-designed, we could disclose their
source code without fear of helping attackers. Unfortunately, the concern is that existing
systems are so poorly designed that source code disclosure could in the short run help at-
tackers. In the long run, my experience is that disclosure helps to raise awareness of the
problems among the users of the software, and thereby drives better security practices and
forces systems to be better designed. However, this takes time. Therefore, my expectation is
that in the long run source code disclosure would improve voting system security more than
it hurts, but the transition must be managed carefully.

One must be careful to avoid drawing the wrong conclusion. Some vendors and election
officials have suggested that the secret, proprietary nature of voting system code is a key
security measure, because giving people the source code would give them directions on how
to hack it. Such statements reflect a disturbing lack of familiarity with computer security.
I am not aware of any computer security expert who suggests that we should rely upon the
secrecy of the source code as a key part of our strategy for securing our elections26; this would
violate basic principles of secure design27.

7



Open source vs. disclosed source. Some advocates have argued that election-related software should
be developed through “open source” processes, where any interested party can contribute code to
the elections software. “Open source” is a term of art in the computing industry. Open source
software is software that is released under relaxed licensing terms. Recipients typically receive the
right to modify the software for their own purposes and to re-distribute their modifications freely.
This allows users to collaborate to improve the software on their own, without relying upon the
original developer of the software. Open source software is often provided to users at no cost, and
the software almost always comes with source code. Open source software is often, but not always,
written by interested volunteers through a non-corporate, community-driven development process.

It is important to note that open source software is not the same as disclosed source software.
Vendors can continue to use traditional software development processes and subsequently disclose
the resulting source code, without any need to adopt any of the other distinguishing features of
open source software. Source code disclosure policies, licensing terms, and software development
processes are three separate matters, and while open source software takes a particular stance on
all three topics, it is source code disclosure that matters most to elections.

While “open source” development processes do have advantages, I believe that mandating “open
source” development would be inappropriate at this time. In comparison, source code disclosure
is a much less radical step. In this model, vendors would continue to write and develop software
themselves and would control the contents of the software, but they would be required to disclose
the source code to certain parties.

The impact of disclosed source on intellectual property. Source code disclosure would not prevent
vendors from competing on the merits of their source code and protecting their legitimate innova-
tions. Source code disclosure would implicate several forms of intellectual property protection, but
I wish to focus on issues involving copyright and trade secret protection. My understanding is that
source code may be protected simultaneously under copyright law and trade secret law.

Before addressing these issues, however, I’ll address an initial question that the previous sections
of my testimony might provoke: If source code disclosure, or publication of source code under an
open source license, offers long-term advantages to voting system vendors as well as the election
system as a whole, why haven’t vendors already moved in that direction on their own? The answer,
I think, is that if one vendor discloses their source code and another does not, the disclosed-
source vendor has no way of knowing whether their rights are being violated by the closed-source
vendor. Therefore, the marketplace discourages vendors from going to a disclosed source model on
a voluntary basis.

Vendors would retain copyright protection in their source code, even if the code were openly
published. This is not unlike publishing a book. When an author publishes a book, it is protected
under copyright law, and the author can assert the rights granted by copyright law to prevent
others from making unauthorized copies. This allows the author to sell copies while providing
recourse against people who would make wholesale copies of the book without permission. Just
as importantly, recipients can read the book and quote excerpts for criticism or other kinds of fair
use. In a similar vein, recipients of voting system source code under could read and analyze the
code, but copyright law would prohibit them from making wholesale copies of the source code.
As a result, vendors’ interests in preventing competitors from free-riding on their efforts would be
protected.

Some source code disclosure models might well threaten a vendor’s current ability to require
counties to use equipment from that vendor, and that vendor only; but the increased competition,
innovation, and flexibility would serve important public interests in the election system.

Source code disclosure does raise difficult questions about trade secret protection. Unrestricted

8



disclosure would likely destroy any trade secret protection in the source code, but some of the more
controlled forms of disclosure (as I discuss later) would preserve the possibility of protecting trade
secrets. Whether trade secret protection is appropriate for source code in certified voting systems is
a question that I’m not qualified to answer on my own, but it is one that I hope this Committee will
examine very carefully. Specifically, the public interest in transparency and accountability warrant
close attention28.

Source code disclosure also eliminates the vendors’ “information advantage” over their cus-
tomers and the public. At present, vendors can make claims about their software (e.g., that it
is perfectly secure) without being contradicted. Source code disclosure would force vendors to be
more circumspect about their claims—which may reduce the vendors’ flexibility, but seems to be
in the public interest.

Requiring source code disclosure of all vendors sets a level playing field. To the extent that
source code disclosure has costs for vendors, vendors can set their prices to reflect the costs of
disclosure.

Policy options

There is a broad spectrum of possible policy options that are available to address these issues.

Do nothing (status quo). One possibility is to make no changes to the status quo regarding source
code disclosure and continue to permit vendors to treat their source code as secret and proprietary.
The risk of doing nothing is that the lack of transparency may contribute to further loss of confidence
in e-voting29.

Mandate disclosure to the public. Another possibility is to require vendors to disclose the full source
code for all the software in their voting equipment to any interested member of the public. This
could be accomplished, for instance, by requiring vendors to disclose source code to the EAC as
a condition of certification and requiring the EAC to publish it or provide it to members of the
public upon request. There should be no possibility for vendors to protest; disclosure would be
mandatory.

Intermediate steps. There are many small steps one could take that would incrementally move us
towards increased disclosure without going all the way to full public disclosure all at once.

• Mandate disclosure to the federal and state election officials. The smallest step would be
to require vendors to disclose source code to federal and state election officials. This would
permit election officials, at their discretion, to commission independent technical experts to
analyze the source code. One shortcoming of this approach is that election officials generally
do not have the necessary technical expertise in-house; hiring paid consultants to perform the
work is expensive; and some election officials might be reluctant to seek analyses that might
reveal embarassing flaws in systems that they have approved and that are in widespread use.

This step would likely have little effect on the status quo. The EAC already has the authority
to demand that vendors disclose the source code to them as a condition of submission for
certification, but has declined to exercise that authority30.

• Mandate disclosure to candidates. The next step would be to require source code to be
disclosed to all candidates and their representatives, such as any technical experts that they
designate. Vendors would not be permitted to protest or prevent such disclosure. To prevent
further re-distribution of the source code, the candidates’ designated experts could be required
to sign agreements not to further disclose the source code to third parties. However, it

9



is critical that these non-disclosure agreements be written to allow the experts to publicly
discuss their findings and provide evidence to support their conclusions. The agreements
must also be written to preserve the independence of the candidates’ experts; vendors and
officials must not be allowed to interfere with, limit, or pressure the candidates’ experts.
Non-disclosure agreements must not be used as a way to silence dissent or place barriers to
meaningful review of the source code.

• Mandate disclosure to local election officials. Another option would be to require that source
code be disclosed to local election officials and their designees. This would permit county
officials, at their discretion, to commission independent technical analysis of the source code.
This might help them to choose among multiple systems when buying new equipment, or to
understand the strengths and weaknesses of their systems and craft appropriate procedural
mitigations.

• Mandate disclosure to qualified experts. A final option would be to require that source code
be disclosed to any qualified expert upon request, regardless of the expert’s affiliation. Those
experts might be required to sign non-disclosure agreements, as discussed earlier; access might
be restricted to US citizens; and to avoid a conflict of interest, vendors might be forbidden from
gaining access to their competitors’ code. However, to ensure that such a requirement meets
its goals, the definition of qualified expert must be crafted carefully to ensure that qualified
people are not wrongly excluded. This is not a theoretical concern: one early attempt to
draft such requirements31 was flawed32 33 34. For instance, it might be reasonable to require
either a graduate degree or at least five years of experience in computing.

Mandating disclosure to qualified experts would help improve voting machines, improve the evalu-
ation process, hold vendors and testing labs accountable for their performance, and lead to more
informed debate about voting systems. It would address concerns about public disclosure aiding
attackers and help manage the transition.

Ultimately, though, this position is problematic in the long run, because it puts a small cadre
of experts in a privileged position. This will be a constant source of dissatisfaction and friction for
those who distrust whichever experts are permitted to study the code. While this does enhance
security review, restricting disclosure to qualified experts fails to address the public interest in the
transparency of voting software.

Phased introduction of disclosure requirements. One way to address the transition risks would be to
gradually introduce these requirements over time. For instance, one possible timetable for increased
source code disclosure might be as follows:

• One might require vendors to disclose source code to state and federal election officials im-
mediately, and require election officials to promptly commission independent expert security
analyses of the systems. Officials could require vendors to fix any security problems found in
the code, to make the code safe for broader disclosure.

• Then, one might require source code disclosure to qualified experts, at their request, after
enough time has passed to correct any problems found in the prior phase. Two years should
suffice.

• Finally, one might require source code disclosure to the public at some future date specified
in advance. Five years notice ought to be enough for vendors to prepare their code for public
disclosure and to ensure that it can withstand scrutiny, so that we can be confident public
disclosure will not assist attackers to attack elections.

10



It is important that the timetable be set and published now, so that vendors have enough time
to ready their systems for public disclosure. Competitive pressures make it difficult for vendors to
begin preparations without a concrete deadline.

If vendors are given sufficient advance notice, there is no reason they cannot ensure that their
systems will be safe to disclose. A gradual introduction of source code disclosure requirements could
minimize the transition risks while advancing the long-term goals of transparency and security.

Reducing dependence on software. Another policy option would be to reduce the severity of the
source code secrecy problem by reducing our dependence upon software in elections. As discussed
earlier, this could be achieved by mandating voter-verified paper records and routine audits. Adop-
tion of paper ballots (whether optically scanned or manually counted) would further reduce the
degree of dependence upon secret software and further reduce the need for source code disclosure.
This direction would not address the public interest in transparency, but it would reduce or mitigate
many of the other problems with secret code.

COTS software

The COTS challenge. COTS code poses a special challenge for mandatory disclosure of voting
system source code. Many deployed voting systems contain COTS software written by third-party
vendors, and the equipment manufacturer may not have access to the source code for that software
or may not have permission to disclose it. Thus, any requirement to disclose the source code for all
software in deployed systems could put some vendors in a serious quandary: they would either have
to negotiate with the third-party software vendor for the rights to disclose that code; replace the
undisclosable third-party software with code that they are free to disclose and seek certification for
the new code; or withdraw their equipment from the market. Forcing the decertification of voting
equipment that counties have already paid for would make life very difficult for local election officials
who have an election to run. The impact of this is likely to vary from vendor to vendor, because
some vendors rely more heavily on COTS code than others. While some vendors might not face
such a quandary, forcing even one major vendor to recall their equipment on short notice would
cause havoc for jurisdictions who use that vendor’s equipment.

New systems would be unlikely to face this problem. There is no reason that voting equipment
needs to contain undisclosable source code. Any competent engineer should be able to design voting
equipment without resorting to third-party COTS code that cannot be disclosed, if source code
disclosure is specified as a requirement at design time. Therefore, for new equipment, I do not see
any barrier to full source code disclosure.

However, disclosing the source code of systems that were not designed to be publicly disclosed
poses significant challenges. The problem is that existing equipment was not designed with source
code disclosure in mind, and consequently some voting systems contain third-party COTS code
that may not be easy to disclose or replace. This complicates the task of setting policy regarding
source code disclosure.

Policy options. This problem with COTS code in legacy voting systems could be addressed in one
of several ways.

• If vendors are given sufficient advance notice of the disclosure requirement, they should be
able to ensure that their code is free of undisclosable COTS code. However, this “sunset”
period for use of COTS code would delay imposition of the full disclosure requirement by
several years.

11



• Another option is to exempt third-party COTS code from the source code disclosure re-
quirement. Vendors would only be required to disclose source code for software they wrote
themselves or that they otherwise have permission to disclose.

However, this option is problematic, because COTS code can still cause problems. From an
engineering point of view, COTS code is no safer than vendor-written code. COTS code
can contain bugs and defects; it can contain malicious logic deliberately introduced to rig
an election; and it can be manipulated or tampered with, just like vendor-written code.
Therefore, any exemption for COTS code should probably be time-limited.

• Perhaps the least intrusive option is to introduce source code disclosure in a phased fashion.
In the first phase, voting system vendors would be required to disclose as much source code as
possible, including (at a minimum) all of the source code that they have written themselves.
During the first phase, vendors would qualify for a limited-time exemption for COTS code,
if they do not have the right to re-distribute its source code. In the second phase, after
enough time has passed to allow vendors to replace all undisclosable COTS code or otherwise
re-design their machines to ensure compliance, the COTS exemption would be eliminated and
vendors would be required to disclose all election-related source code. To ensure the success
of such a phased plan, it would be important to set a clear timetable in advance so that
vendors can plan accordingly.

Notes

1B. Simons, “Electronic voting systems: the good, the bad, and the stupid”, ACM Queue 2(7), Oct. 2004.
2D.W. Jones, “Misassessment of Security in Computer-Based Election Systems”, Cryptobytes 7(2), Fall 2004,

pp.9-13.
3P. Smith, “States with Escrow Provisions,” March 12, 2007. https://www.verifiedvotingfoundation.org/

article.php?id=6439
4D.W. Jones, “Voting System Transparency and Security: The need for standard models”, written testimony

before the EAC Technical Guidelines Development Committee, Sept. 20, 2004. http://www.cs.uiowa.edu/~jones/
voting/nist2004.shtml

5J. Hall, “Transparency and Access to Source Code in E-Voting,” USENIX/ACCURATE Electronic Voting Tech-
nology (EVT’06) Workshop. http://josephhall.org/papers/jhall_evt06.pdf

6D.K. Mulligan, J.L. Hall, written testimony before the California Senate Elections, Reapportionment & Con-
stitutional Amendments Committee, Feb. 8, 2006. http://josephhall.org/nqb2/media/Mulligan_Hall_OSHRG_

Statement.pdf
7P.G. Neumann, Written testimony before the California Senate Elections Committee, Feb. 8, 2006. http:

//www.csl.sri.com/neumann/calsen06.pdf
8R.J. Anderson, Security Engineering – A Guide to Building Dependable Distributed Systems, Wiley, 2001, §23.3.
9J. Bannet, D.W. Price, A. Rudys, J. Singer, D.S. Wallach, “Hack-a-Vote: Demonstrating Security Issues with

Electronic Voting Systems”, IEEE Security & Privacy Magazine 2(1), Jan./Feb. 2004, pp.32-37.
10D.W. Jones, “Auditing Elections”, Communications of the ACM 47(10), Oct. 2004, pp.46-50.
11A.D. Rubin, Written testimony before the Election Assistance Commission, June 30, 2005. http://avirubin.

com/vote/eac2.pdf
12TGDC Resolution #06-06, “Software Independence of Voting Systems,” Dec. 5, 2006.
13R.L. Rivest, J.P. Wack, “On the notion of ‘software independence’ in voting systems”, http://vote.nist.gov/

SI-in-voting.pdf.
14“Security Analysis of the Diebold AccuBasic Interpreter”, Report of the California Secretary of State’s Voting

Systems Technology Assessment Advisory Board, Feb. 14, 2006.
15A. Yasinsac, D. Wagner, M. Bishop, T. Baker, B. de Medeiros, G. Tyson, M. Shamos, M. Burmester, “Software

Review and Security Analysis of the ES&S iVotronic 8.0.1.2 Voting Machine Firmware,” Feb. 23, 2007. http:

//election.dos.state.fl.us/pdf/FinalAudRepSAIT.pdf
16H. Hursti, Black Box Voting, “Critical Security Issues with Diebold Optical Scan”, July 4, 2005.
17H. Hursti, Black Box Voting, “Critical Security Issues with Diebold TSx”, May 11, 2006.

12



18A. Rubin, E. Felten, “Report Claims Very Serious Diebold Voting Machine Flaws,” May 11, 2006. http:

//www.freedom-to-tinker.com/?p=1014
19D.W. Jones, “The Case of the Diebold FTP Site,” Oct. 2, 2003. http://www.cs.uiowa.edu/~jones/voting/

dieboldftp.html
20T. Kohno, A. Stubblefield, A.D. Rubin, D.S. Wallach, “Analysis of an Electronic Voting System”, July 24, 2003.
21RABA Innovative Solution Cell, “Trusted Agent Report: Diebold AccuVote-TS System”, Jan. 20, 2004.
22“Security Analysis of the Diebold AccuBasic Interpreter”, Report of the California Secretary of State’s Voting

Systems Technology Assessment Advisory Board, Feb. 14, 2006.
23D.W. Jones, “Connecting Work on Threat Analysis to the Real World”, June 8, 2006.
24A. Kerckhoffs, “La cryptographie militaire”, Journal des sciences militaires, vol. IX, Jan.-Feb. 1883.
25B. Schneier, “Secrecy, Security, and Obscurity,” May 15, 2002.
26B. Schneier, “Voting Software and Secrecy,” Oct. 2, 2006.
27J.H. Saltzer, M.D. Schroeder, “The protection of information in computer systems,” Proceedings of the IEEE vol

63 no 9, Sept. 1975.
28D.S. Levine, “Secrecy and Unaccountability: Trade Secrets in Our Public Infrastructure,” 59 Florida Law Review

135. http://ssrn.com/abstract=900929
29D.L. Dill, B. Schneier, B. Simons, “Viewpoint: Voting and technology: who gets to count your vote?”, Commu-

nications of the ACM, 46(8), Aug. 2003.
30A. Burstein, J.L. Hall, “Unlike Ballots, EAC Shouldn’t Be Secretive,” Roll Call, Jan. 22, 2007. http://

josephhall.org/papers/Burstein_Hall-Roll_Call_2007-01-26.pdf.
31Notice of Rule Development, “Rule 1S-2.004: Procurement, Use and Assessment of Voting Systems,” Florida

Administrative Weekly, May 26, 2006.
32D. Dill, “Comments proposed rules 1S-2.004 and 1S-2.015,” June 12, 2006. http://election.dos.state.fl.

us/laws/proposedrules/pdf/partC_pubCom_r1s_2_004_2_015.pdf
33A. Yasinsac, “Comments on Rule #1S-2.004. Procurement, Use and Assessment of Voting Systems,” June 10,

2006. http://election.dos.state.fl.us/laws/proposedrules/pdf/partA_pubCom_r1s_2_004_2_015.pdf
34R. Benham, “Proposed Rules 1S-2.004 and 1S-2.015,” June 12, 2006. http://election.dos.state.fl.us/laws/

proposedrules/pdf/partA_pubCom_r1s_2_004_2_015.pdf

13


